On the well-posedness of the Prandtl boundary layer equation

Vlad Vicol
Department of Mathematics, The University of Chicago
Incompressible Fluids, Turbulence and Mixing In honor of Peter Constantin's 60th birthday
Carnegie Mellon University, October 14, 2011

The Euler and Navier-Stokes equations

$$
\begin{aligned}
& \partial_{t} u^{N S}+u^{N S} \cdot \nabla u^{N S}+\nabla p^{N S}=\nu \Delta u^{N S} \\
& \nabla \cdot u^{N S}=0, \quad \gamma u^{N S}=0 \\
& \partial_{t} u^{E}+u^{E} \cdot \nabla u^{E}+\nabla p^{E}=0 \\
& \nabla \cdot u^{E}=0, \quad u^{E} \cdot n=0
\end{aligned}
$$

- $(x, y)=\left(x_{1}, \ldots, x_{d-1}, y\right) \in \Omega \subset \mathbb{R}^{d}$ is smooth $(d=2,3)$
- $(u, w)=\left(u_{1}, \ldots, u_{d-1}, w\right)$ the velocity, p the pressure
- γ is the trace onto $\partial \Omega$
- n is the outward unit normal to Ω
- ν is the kinematic viscosity
- Q: does $u^{N S} \rightarrow u^{E}$ as $\nu \rightarrow 0$? in what space ? rates?

A few results on the inviscid limit

In the absence of boundaries ($\Omega=\mathbb{R}^{d}$ or $\Omega=\mathbb{R}^{d}$)

- inviscid limit holds in L^{2} : Kato ('72), Swann ('71)
- rates of convergence which are optimal $\mathcal{O}(\sqrt{\nu})$, and attained for smooth vortex patch initial data: Constantin and Wu ('95)
In the presence of boundaries (and Dirichelt B.C.)
- Kato ('84) shows that if

$$
\lim _{\nu \rightarrow 0} \nu \int_{d(y, \partial \Omega)<\nu}\left\|\nabla u^{N S}\right\|_{L^{2}}^{2} d y=0
$$

then the inviscid limit holds (in L^{2})

- improved by Temam and Wang ('98), to only require the tangential part of the velocity gradient
- inviscid limit holds if $-\nu \Delta$ is replaced by anisotropic viscosity $\nu_{1} \partial_{y y}-\nu_{2} \partial_{x x}$, with $\nu_{1} / \nu_{2} \rightarrow 0$: Masmoudi ('98)
Further works by: Bardos, Beirao da Veiga, Crispo, Lopes Filho, Mazzucato, Nussenzveig Lopes, Taylor, Kelliher, etc.....

Asymptotic Expansions in the inviscid limit

- Prandtl (1904) lays foundations of boundary layer theory
- in the boundary layer (BL) the inertial and viscous forces should be comparable
- in the BL, γu (the tangential component of the velocity), has to jump from 0 (as prescribed by Navier-Stokes), to γu^{E} (as prescribed by Euler)
- in the BL, the viscous term $\nu \partial_{y y} u$ should be $\mathcal{O}(1)$, so that the thickness of the BL should be $\varepsilon=\sqrt{\nu}$
- hence, for $\nu \ll 1$, it is natural to consider the asymptotic expansion

$$
u^{N S}=u^{N S, 0}+\varepsilon u^{N S, 1}+\varepsilon^{2} u^{N S, 2}+\ldots
$$

where as before $\varepsilon=\sqrt{\nu}$

- the idea is that $u^{N S, 0}$ is approximatively u^{E} outside of the BL
- inside the BL: let $Y=y / \varepsilon$, so that $\partial_{y} w=\partial_{Y} w / \epsilon$; hence w is $\mathcal{O}(\epsilon)$
- hence, for the solution inside the BL, Prandtl makes the ansatz:

$$
u^{N S, 0}(x, y)=\left(u^{P}(x, Y), \varepsilon w^{P}(x, Y)\right)
$$

The Prandtl boundary layer equations

- Plug in the velocity $(u(x, y / \varepsilon), \varepsilon w(x, y / \varepsilon))$ in the Navier-Stokes equations and formally send ε to 0 .
- To avoid issues due to the curvature of the boundary, let $\Omega=\mathbb{H}=\left\{(x, Y) \in \mathbb{R}^{d}: Y>0\right\}$ be the upper half-plane/space.
- In the limit we obtain the Prandtl boundary layer equations:

$$
\begin{aligned}
& \partial_{t} u^{P}-\partial_{Y Y} u^{P}+u^{P} \cdot \nabla_{X} u^{P}+w^{P} \partial_{Y} u^{P}+\nabla_{X} p^{P}=0 \\
& \partial_{Y} p^{P}=0 \\
& \nabla_{X} \cdot u^{P}+\partial_{Y} w^{P}=0
\end{aligned}
$$

- Boundary conditions

$$
\begin{aligned}
& \lim _{Y \rightarrow \infty} u^{P}=\gamma u^{E} \\
& \lim _{Y \rightarrow \infty} p^{P}=\gamma p^{E} \\
& \gamma u^{P}=\gamma w^{P}=0
\end{aligned}
$$

- study the IVP: $u^{P}(x, Y, 0)=u_{0}^{P}(x, Y)$

Mathematical issues for the Prandtl equations

Well-posedness in suitable functional spaces:

- Monotonic data in y : Oleinik ('66)
- Analytic data: Caflisch and Sammartino ('98 - Part I) - requires analyticity w.r.t. both x and y; improved by Cannone, Lombardo, and Sammartino ('03) to require analyticity w.r.t. only x
- Weak solutions for pressure of fixed sign: Xin and Zhang ('04)

III-posedness and blow-up:

- Sobolev data ill-posedness: Grenier ('00), Gerard-Varet and Dormy ('09)
- Sobolev data blow-up in $W_{Y}^{1, \infty}$: E and Engquist ('97) Justify the formal derivation of the Prandtl equations in the inviscid limit, i.e. prove that

$$
u^{N S}=u^{E}\left(1-\chi_{B L}\right)+u^{P} \chi_{B L}+\mathcal{O}(\varepsilon)
$$

- Sammartino and Caflisch ('98-Part II)

Our motivation

- remove the need for exponential matching at the top of the BL
- indeed, there is no physical justification for exponential matching (mathematical artifact?)
- in fact, the quantity that measures the effect of the flow inside of the BL on the underlying Euler flow outside of the BL is the so-called displacement thickness cf. Batchelor (99'), which is defined as

$$
\delta_{1}(x)=\int_{0}^{\infty}\left(1-\frac{u^{P}(x, Y)}{U(x)}\right) d Y
$$

- it seems that any integrable algebraic matching is sufficient to at least define the displacement thickness

Re-write the Prandtl equations

- For notational convenience, let $U=\gamma u^{E}$
- Homogenize B.C. at $Y=\infty$, and get rid of pressure, by using

$$
\partial_{t} U+U \partial_{x} U+\gamma \partial_{x} p^{E}=0,
$$

and the variable change

$$
v=u^{p}-U
$$

- The Prandtl evolution for the prognostic variable become

$$
\left(\partial_{t}-\partial_{Y Y}+Y \partial_{X} U \partial_{Y}\right) v+v \partial_{X} v-\partial_{Y} v \int_{0}^{Y} \partial_{X} v+U \partial_{X} v+v \partial_{X} U=0
$$

A dynamic change of coordinates

- For simplicity of exposition set $d=2$. Recall: $\gamma u^{E}(x, t)=U(x, t)$.
- Define $A(x, t)$ to be the unique real-analytic solution of the IVP

$$
\begin{aligned}
& \partial_{t} A(x, t)+U(x, t) \partial_{x} A(x, t)=A(x, t) \partial_{x} U(x, t) \\
& \left.A(x, t)\right|_{t=0}=1
\end{aligned}
$$

on $\mathbb{R} \times[0, T]$, for some $T>0$.

- For $\theta>1$, let $\Phi(y)=\int_{0}^{y} \phi(\zeta) d \zeta$, where

$$
\phi(y)=\langle y\rangle^{-\theta}=\left(1+y^{2}\right)^{-\theta / 2}
$$

- Change of variables: the "new" vertical variable y and velocity v

$$
\begin{aligned}
& y=Y A(x, t) \\
& v(x, y, t)=u^{P}(x, Y, t)-(1-\phi(y)) U(x, t)
\end{aligned}
$$

The dynamically reformulated Prandtl equations

- Under this change of variables, the Prandtl system reads

$$
\begin{aligned}
& \partial_{t} v-A^{2} \partial_{y y} v+N(v)+L(v)=F \\
& N(v)=v \partial_{x} v-\partial_{x} W(v) \partial_{y} v+\partial_{x} a W(v) \partial_{y} v \\
& W(v)(x, y)=\int_{0}^{y} v(x, \zeta) d \zeta \\
& \begin{array}{l}
L(v)=\partial_{x} W(v) \partial_{y} \phi U+\partial_{x} v(1-\phi) U+\partial_{y} v\left(\Phi \partial_{x} U-\partial_{x} a \Phi U\right) \\
\quad-W(v) \partial_{x} a \partial_{y} \phi U+v(1-\phi) \partial_{x} U
\end{array} \\
& \begin{array}{l}
F=\left(\phi(1-\phi)+\Phi \partial_{y} \phi\right) U \partial_{x} U-\partial_{x} a \partial_{y} \phi \Phi U^{2}-A^{2} \partial_{y y} \phi U-\phi \partial_{x} P
\end{array}
\end{aligned}
$$

- The system is supplemented with the boundary conditions

$$
\begin{aligned}
& \left.v(x, y, t)\right|_{y=0}=\left.u(x, Y, t)\right|_{Y=0}-(1-\phi(0)) U(x, t)=0 \\
& \lim _{y \rightarrow \infty} v(x, y, t)=\lim _{Y \rightarrow \infty} u(x, Y, t)-U(x, t)=0
\end{aligned}
$$

for all $(x, t) \in \mathbb{R} \times[0, \infty)$

Functional Setting

- Consider the y-weight given by

$$
\rho(y)=\langle\boldsymbol{y}\rangle^{\alpha}
$$

for some $\alpha>0$ to be fixed later.

- We define a norm for the set of functions which are real-analytic in x and decay in y by

$$
\|v\|_{X_{\tau}}^{2}=\sum_{m \geq 0}\left\|\rho(y) \partial_{x}^{m} v(x, y, t)\right\|_{L^{2}(\mathbb{H})}^{2} 2^{2 m}(t) M_{m}^{2},
$$

where $\tau>0$ is the analyticity radius, and we denote the analytic weights

$$
M_{m}=\frac{(m+1)^{r}}{m!}
$$

for $r>0$, a Sobolev exponent.

The Main Theorem

Theorem (Kukavica and V. ('11))
Fix real numbers $\alpha>1 / 2, \theta>\alpha+1 / 2$, and $r>1$.
Assume that the initial data for the underlying Euler flow is uniformly real analytic.
There exists $\tau_{0}>0$ such that for all $v_{0} \in X_{\tau_{0}}$ there exits $T_{*}>0$ such that the initial value problem associated to the Prandtl boundary layer equations has a unique real-analytic solution on $\left[0, T_{*}\right]$.

- Solutions may be constructed even if the initial datum v_{0} decays only as $\langle y\rangle^{-1-\epsilon}$ for arbitrary $\epsilon>0$.
- This improves on the previous works, which require exponential matching at $Y=\infty$.

Setup of the proof

- By the definition $\|v\|_{X_{\tau}}$, we have formally have

$$
\frac{1}{2} \frac{d}{d t}\|v\|_{X_{\tau}}^{2}+(-\dot{\tau})\|v\|_{Y_{\tau}}^{2}=\sum_{m \geq 0}\left(\frac{1}{2} \frac{d}{d t}\|\rho v\|_{\dot{H}_{x}^{m}}^{2}\right) \tau^{2 m} M_{m}^{2},
$$

where we denoted

$$
\|v\|_{Y_{\tau}}^{2}=\sum_{m \geq 1}\|\rho v\|_{\dot{H}_{x}^{m}}^{2} \tau^{2 m-1} m M_{m}^{2} .
$$

- The heart of the matter consists of estimating the term on the right side of the above equality, via Sobolev energy estimates.
- After applying ∂_{x}^{m} to the Prandtl equations, multiplying by $\rho^{2} \partial_{x}^{m} v$, and integrating, we get

$$
\frac{1}{2} \frac{d}{d t}\left\|\rho \partial_{x}^{m} v\right\|_{L^{2}}^{2}-\left\langle\partial_{x}^{m}\left(A^{2} \partial_{y y} v\right), \rho^{2} \partial_{x}^{m} v\right\rangle=\left\langle\rho \partial_{x}^{m}(F-N(v)-L(v)), \rho \partial_{x}^{m} v\right\rangle .
$$

Closing the a priori estimates

- combining all previous estimates, we have

$$
\begin{aligned}
\frac{d}{d t}\|v\|_{X_{\tau}}^{2}+ & \left\|A \rho \partial_{Y} v\right\|_{X_{\tau}}^{2} \\
\leq & C\left(1+\tau^{-2}\right)\|v\|_{X_{\tau}}^{2}+C \tau^{-1}\left\|A \rho \partial_{Y} v\right\|_{X_{\tau}}\|v\|_{X_{\tau}}^{2}+C\|v\|_{X_{\tau}} \\
& +\left(\dot{\tau}+C+C_{*} \tau^{-1}\left\|A \rho \partial_{Y} v\right\|_{X_{\tau}}\right)\|v\|_{Y_{\tau}}^{2}
\end{aligned}
$$

for some positive constant C.

- choose τ to solve the ODE

$$
\frac{d}{d t}\left(\tau^{2}\right)+4 C \tau_{0}+4 C\left\|A \rho \partial_{Y} v\right\|_{X_{\tau}}=0
$$

with initial condition τ_{0}

- as long as $\tau>0$ this implies that

$$
\dot{\tau}+2 C+2 C \tau^{-1}\|v\|_{z_{\tau}} \leq 0
$$

